- 作者: 信易博
- 来源:
- 日期: 2012-11-22
- 阅读: 2493次
近年来,车牌自动识别技术已被广泛应用于城市智能交通系统中,如闯红灯抓拍、超速行驶违章抓拍及交通治安卡口系统等,尤其是交通治安卡口系统,其作为治安刑侦管理的重要科技手段之一,对车牌自动识别技术提出了更高的要求,促进了车牌自动识别技术的快速发展。高清系统的出现,使得图像分辨率大大提高,为车牌自动识别技术提供了良好的基础条件,车牌识别的准确率得到很大的提高,并且相应的识别基础数据被不断地得到挖掘,卡口业务数据也从单一的治安及交通监控发展为可供交通管理、城市规划、公安刑侦、国安安保、高速公路多路径识别等不同业务部门均可以综合应用的综合业务系统。
系统主要由前端数据采集子系统、网络传输子系统、中心管理子系统等部分组成。前端数据采集子系统通过视频跟踪和分析技术获取车辆的经过时间、速度、图片、车牌号码、车身颜色等数据。数据通过网络传输子系统传输到中心管理子系统。中心管理子系统对数据进行集中管理、存储、共享等处理。
车牌自动识别流程
系统前端采用了嵌入式高清一体化摄像机,可实现百万级分辨率的视频和图片码流输出,内置了高性能DSP芯片,支持内置智能算法、可实现视频检测、车牌自动识别等功能。
内置相机的车牌自动识别系统使用了独特的纹理+模型算法,具有定位精准,识别速度快,识别精度高,误识率低等特点,不但能捕获有车牌的车辆,对于无牌车同样也能进行正常捕获。将传统模式中基于后端服务器或前端工控机的车牌识别算法移植到前端相机中,具有高集成度,高稳定性,高适应性等特点,相比传统的PC或工控机模式,更能适应实际道路的复杂环境,更能满足智能交通系统中全天候工作的要求。
采用了动态视频识别技术,实现对视频流每一帧图像进行识别,从而达到增加识别比对次数,大大提高了识别的效率和准确率。
车辆牌照的自动识别主要是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。